Supported Models
DeepMyst provides a unified API for accessing various language models with built-in token optimization. The platform supports models from multiple providers through a single, consistent interface.
Available Models
DeepMyst currently supports the following models:
OpenAI Models
gpt-4o-mini
- GPT-4o Mini
gpt-4o
- GPT-4o
o1
- OpenAI o1
o1-mini
- OpenAI o1-mini
o3-mini
- OpenAI o3-mini
chatgpt-4o-latest
- ChatGPT-4o Latest
Anthropic Models
claude-3-7-sonnet-20250219
- Claude 3.7 Sonnet
claude-3-5-sonnet-latest
- Claude 3.5 Sonnet
claude-3-5-haiku-latest
- Claude 3 Haiku
claude-3-opus-latest
- Claude 3 Opus
Google Models
gemini-2.0-flash
- Gemini 2.0 Flash
gemini-2.0-flash-lite-preview-02-05
- Gemini 2.0 Flash Lite
gemini-1.5-pro
- Gemini 1.5 Pro
gemini-1.5-flash
- Gemini 1.5 Flash
gemini-1.5-flash-8b
- Gemini 1.5 Flash 8B
Groq Models
llama-3.1-8b-instant
- Llama 3.1 8B Instant
llama-3.3-70b-versatile
- Llama 3.3 70B Versatile
llama-guard-3-8b
- Llama Guard 3 8B
mixtral-8x7b-32768
- Mixtral 8x7B 32K
gemma2-9b-it
- Gemma2 9B IT
qwen-2.5-32b
- Qwen 2.5 32B
deepseek-r1-distill-qwen-32b
- Deepseek R1 Qwen 32B
deepseek-r1-distill-llama-70b-specdec
- Deepseek R1 Llama 70B Spec
deepseek-r1-distill-llama-70b
- Deepseek R1 Llama 70B
Using Models with Direct API Requests
Standard Request
// Standard request with Claude 3.7 Sonnet
const response = await fetch('https://api.deepmyst.com/v1/chat/completions', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer YOUR_API_KEY`
},
body: JSON.stringify({
model: 'claude-3-7-sonnet-20250219',
messages: [
{ role: 'user', content: 'What are the benefits of token optimization?' }
]
})
});
const data = await response.json();
console.log(data.choices[0].message.content);
Optimized Request
// Using token optimization with GPT-4o
const response = await fetch('https://api.deepmyst.com/v1/chat/completions', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer YOUR_API_KEY`
},
body: JSON.stringify({
model: 'gpt-4o-optimize', // Note the -optimize suffix
messages: [
{ role: 'user', content: 'Explain quantum computing in simple terms.' }
]
})
});
const data = await response.json();
console.log(data.choices[0].message.content);
Streaming Request
// Streaming response with Gemini 1.5 Pro
const response = await fetch('https://api.deepmyst.com/v1/chat/completions', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer YOUR_API_KEY`
},
body: JSON.stringify({
model: 'gemini-1.5-pro-optimize',
messages: [
{ role: 'user', content: 'Write a short story about AI.' }
],
stream: true
})
});
// Process the stream
const reader = response.body.getReader();
const decoder = new TextDecoder('utf-8');
while (true) {
const { done, value } = await reader.read();
if (done) break;
const chunk = decoder.decode(value);
const lines = chunk.split('\n').filter(line => line.trim() !== '' && line.trim() !== 'data: [DONE]');
for (const line of lines) {
if (line.startsWith('data: ')) {
const jsonStr = line.slice(6);
try {
const parsed = JSON.parse(jsonStr);
const content = parsed.choices?.[0]?.delta?.content || '';
if (content) process.stdout.write(content);
} catch (e) {
console.error('Error parsing chunk:', e);
}
}
}
}
Using Models with OpenAI Library
You can use the OpenAI SDK with DeepMyst by simply changing the base URL. This allows you to leverage familiar OpenAI patterns while accessing all supported models.
Installation
Configuration
import OpenAI from 'openai';
const openai = new OpenAI({
apiKey: 'YOUR_API_KEY',
baseURL: 'https://api.deepmyst.com/v1'
});
Standard Request
// Using Llama 3.3 70B through OpenAI SDK
async function generateResponse() {
const completion = await openai.chat.completions.create({
model: 'llama-3.3-70b-versatile',
messages: [
{ role: 'user', content: 'Compare and contrast different AI architectures.' }
]
});
console.log(completion.choices[0].message.content);
}
generateResponse();
Optimized Request
// Using Mixtral 8x7B with optimization
async function generateOptimizedResponse() {
const completion = await openai.chat.completions.create({
model: 'mixtral-8x7b-32768-optimize', // Note the -optimize suffix
messages: [
{ role: 'system', content: 'You are a helpful assistant.' },
{ role: 'user', content: 'Explain how transformers work in machine learning.' }
]
});
console.log(completion.choices[0].message.content);
}
generateOptimizedResponse();
Streaming Request
// Streaming with OpenAI SDK using Claude 3 Opus
async function generateStreamingResponse() {
const stream = await openai.chat.completions.create({
model: 'claude-3-opus-latest-optimize',
messages: [
{ role: 'user', content: 'Write a poem about artificial intelligence.' }
],
stream: true
});
// Process the stream
for await (const chunk of stream) {
const content = chunk.choices[0]?.delta?.content || '';
if (content) process.stdout.write(content);
}
}
generateStreamingResponse();
Model Selection Guidance
- Use
-optimize
suffix when token efficiency is important
- Choose smaller models (mini variants) for faster responses and lower costs
- Choose larger models (opus, pro variants) for more complex reasoning tasks
- For high-throughput applications, consider models like
llama-3.1-8b-instant
or gemini-1.5-flash
- Consider using the router to automatically route to the best model